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A Multidimensional Compact Higher-Order Scheme for 
3-D Poisson’s Equation 
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Unit6 de Mtkanique Appliquke, Universite’ Catholique de Louvain, 
B-1348 Louvain-la-Neuve, Belgium 

A multidimensionai compact finitedifference scheme is applied to the solution of a three- 
dimensional Poisson’s equation. Excellent precision is obtained by means of a moderate 
discretization net. The presence of Neumann boundary conditions calls for special attention 
because these normal conditions affect the global precision. The numerical results for a test 
case involving five Neumann conditions and one Dirichlet condition on the six faces of a unit 
cube show good agreement with the analytical solution. 

1. INTRODUCTION 

We are interested in solving Poisson’s equation 

(1) 

in a three-dimensional parallelepiped R where the function p is known on a portion 
cYR, of the boundary (Dirichlet conditions) and its normal derivative on the remaining 
portion 8R, (Neumann conditions) [i?R r U c?R, = 8R is the total boundary of the 
domain R]. The computational solution of such an equation must approach the exact 
solution within a given precision, in minimum computer time, and with a limited 
computer memory. For a fixed order of precision, the use of high-order finite- 
difference methods improves the latter two efficiency criteria. 

The precision of a finite-difference method rests essentially on the accuracy of the 
basic function derivatives. Consider the discretized form of the Poisson’s equation at 
a point P. The second derivative in a direction may be classically evaluated at P as a 
linear combination of the basic function values in the proximity of P. The precision is 
improved when the linear combination includes more terms. The hermitian compact 
method used here is based on another principle: the equation must be satisfied 
simultaneously at many points and the derivative known at these different points. The 
discrete relation between the basic function and its derivative may therefore include 
the value of the derivative at more than one point and the result is a gain in precision. 
We take optimal advantage of this fact in the three spatial directions, while 
considering only three consecutive points in each direction. 
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One-dimensional higher-order finite-difference expressions between a function and 
its derivatives are well known (Collatz [ 1 I). The application of these hermitian 
compact relations in solving partial differential equations in fluid dynamics is more 
recent (Orszag and Israeli [2]). Many test problems have been given (Hirsh [3]; 
Adam [4]) that show the advantage of this procedure. These latter papers show a 
gain in precision over the classical second-order methods. 

The numerical solution of the three-dimensional Poisson’s equation has already 
been studied. Wilhelmson and Ericksen [5] analyse the extension of many two- 
dimensional second-order direct methods based on cyclic reduction and the Fourier 
transform. Shaanan and Ferziger [6] reduce the three-dimensional equation to two 
dimensions by a Fourier transform along the third direction, and then apply finite 
differences by compact relations in the two remaining dimensions. An interesting 
feature of our method is the excellent precision obtained by using three-dimensional 
compact relations between the known values q of the right-hand side of Eq. (1) and 
the unknown values of function p, A special treatment of the Neumann boundary 
conditions has also been investigated and has improved the previous handling of this 
condition, as it was proposed in [6]. This study is in fact a particular case of a more 
general problem in incompressible fluid dynamics and enables us to solve a pressure 
equation characterized by Neumann conditions on five of the six faces of a 
parallelepipedic domain. 

2. BASIC ONE-DIMENSIONAL COMPACT RELATIONS 

The one-dimensional compact relations are derived by setting to zero certain 
expressions of the form 

r=-k 

where P~+~, P;,,, and py+:, are respectively the variable and its first and second 
derivatives at the discretization points near point P,. As a first basic choice, the value 
of k is 1 in order to give the expression a tridiagonal structure. According to the 
desired relation, some parameters a,, b,, or c, (r= -l,O, 1) may be set to zero as a 
second option. Thereafter the remaining parameters are optimized to cancel E as well 
as possible. This is accomplished by expanding P,+~, P;+~, py+ * as Taylor series 
centered around P, and by setting the coefficients of powers of the spatial step h 
equal to zero to as high a power of h as possible (Collatz [ 11). 

At an interior point P+ the following relation is obtained when the b, are set to 
zero : 

P,-l--P,+P,+l=x 12 (PL, + 1oPr +p;;J + 0 - [ &P1”‘]. (2) 
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For points P, and P,,, on boundaries with a Neumann condition, the tridiagonal 
structure of the system is maintained with the following two-point relations (a-r, 
b --1, c-,, b,=O or a,, b,, c,, b-,=0): 

The decrease in precision of these boundary relations justifies a mesh refinement 
near to the boundaries with Neumann conditions. Suppose that the spatial step 
between the boundary node and the nearest node in the normal direction is half the 
spatial step h inside the domain. 

In case of Dirichlet and Neumann conditions, the sequence of mesh points is 
therefore: P,, P, ,..., P,, P,, 1,2. (On a unit length, h = 2/(21+ I).) For two Neumann 
conditions, the mesh points are P,, P,,, P,, ,..., PmeYZ, P,. (h = l/m.) 

The expressions at the boundary node P, and the first interior node Pvz become 

h2 
h ’ pvl -p. = 24 (PC* + 2~:) + Tao + 0 [-&Pk‘q, (W 

2PO-3P,,2+P3/2- 48 -hZ (-zp; + 33py,, + 5p;,,) + e 
and, correspondingly, at P, and P,- y2, 

p,,2--p,=$(P:-U2+2p:)-~Pm+e - [ &P:‘], (3b) 

2P, - 3P,-1f2 +&n-3/2 = g (-2p; + 33p;-&l2 + 5p;-y21 

+e +E (5) 

[ 
96 Pm-112 I * (4b) 

The boundary mesh refinement provides a division by 16 of the truncation error in 
the relations centered at PO and P,. It represents a gain of one order of magnitude 
and brings the precision at the boundary nearer to that inside the domain. 

The use of a higher-order boundary condition instead of the mesh refinement 
technique does not prove interesting. There exists no sixth-order relationship of the 
form 

up, + bp, + cp, = dp$ + ep;’ + fp’; + gpb + 8[h6pIP’], 

where g does not vanish. 
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The restriction g # 0 reduces the order to h 5. By cancelling the coefficient of 
pI(J= 0), one finds 

PrPo=fh’( a5 (5) pb’ + 2~4’) + 2hp;, + 8 =po [ 1 . 

This equation makes use of information at the second interior point which might be 
“far” from the boundary, while p, does not appear. 

3. PRINCIPLE OF THE MULTIDIMENSIONAL COMPACT METHOD 

Let us consider as an example the two-dimensional operator 

M(P) = Pxx + Pyy 

and the associated Poisson’s equation 

Consider a set of 3 x 3 discretization nodes centered at point (i,,j,). On rows 
j, - 1, jo, j, + 1, relations of type (2) may be written between pxx and p. On columns 
i, - 1, i,, i, + 1, relations of type (2) may also be expressed between p,,,, and p. By 
addition of these six relations with a multiplicator 10 for row j, and column i,, one 
obtains in each node of the nine-point set the expression pxx t pyy, i.e., the operator 
M(p). The resulting compact relation is depicted in Fig. 1; on the left-hand side, a 

M(P) i Pxx + PYV 

P= 

: 
10 
*  : 

:" 
100 IO 

t + 

: 
10 
l : 

X-l/h; , W/h; 

cl=-240(X*V) c3 = 12OV - 24X 

c2 = 120X - 24V c4=12(X+V) 

FIG. I. General two-dimensional compact relation. 

I M(P) 
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linear combination of the M(p) E q known values at the nine nodes appears, and on 
the right-hand side a linear combination of the unknown values of p at the same nine 
points appears. 

An analogous operation may be carried out on an 27-node set for the three- 
dimensional operator 

~(P)=Pxx+P,,+Pzz 

and the associated Poisson’s equation 

Figure 2 presents the compact relation obtained with relations of type (2) in the three 
spatial directions. 

Let us retain the general form of the one-dimensional compact discrete expressions 
w(4): 

a; [S(P)l,-,+ mdP)l, + ai’ [S(P)l,+, = &Pi-l + VP, + VPl, 1 + 4, 

N(P) i Pxx + PYy l Pzz 

sa 
?---+ ss 

/ 
c7 / ‘4,’ c7, 

/’ 

/ / ,’ 
C5*’ 55,’ so, / 

cl 

, 
/d/L5 / 

I 
c2; Cl .’ C2.Y’ 
, , I’ /’ 

c5 / s3 *’ 55,’ 

co 
/ 

)-+++ 
/ 

pi-- 54,’ s7 ’ 
/’ 

-/* 
co,’ c5.r 55, /’ 

P= 

)-?---+ 1%” lyl' y' 

I,/' 10,' t" 

10 

I' 
)++ I 

loo& moo ,' 

I' 
loo,' 

I' / 
10,’ lOO/’ IO,” 

XI l/h; , Y = l/h; , 2 = l/h’, 

cl=-24OO(X+Y+Z) cS=-242+12O(X+Y) 

c2=12OOX-24O(Y+Z) c6= -24X+120 (Y + 2) 

c3 = 1200Y - 240 (X + 2 ) c7=-24Y +120(X+2) 

~4-12002 - 240(X + Y) c8=12(x+Y +Z) 

FIG. 2. General three-dimensional compact relation. 

N(P) 
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where index i is relative to the chosen direction and S(p) is the second derivative ofp 
in this direction. By linear combination of such expressions written in the three 
spatial directions, we obtain a set of multidimensional compact relations as in Fig. 2. 

An interesting feature of the compact relations between the unknown p and the 
multidimensional operator M(p) or N(p) is that the operator values are known 
everywhere in the domain and on its boundary [M(p) z q], and that we do not have 
to separately evaluate the second derivatives px,, pyy , and p,, whose boundary values 
are not known precisely. 

Let us finally note that these multidimensional compact relations are of the highest 
order of precision on the set of fixed nodes. 

4. SOLUTION OF THE NUMERICAL SYSTEM 

At each point of the discretization net of the parallelepiped where Poisson’s 
equation (1) is to be solved, one can write an implicit compact relation between the 
unknown values of p and the right-hand side values of q. When assembled, these 
relations form a tridiagonal system exhibiting tridiagonal blocks of tridiagonal 
blocks. 

First of all, let us observe the system organization due to the structure of the one- 
dimensional relations (2)-(4). Figure 1 shows a bidimensional combination between 
relations of type (2). One observes a symmetry in both directions x and y, resulting 
from that of relation (2). On the other hand, Fig. 3 presents a combination between 
relation (2) in the x-direction and relation (4) in the y-direction. The symmetry still 
exists along x, but disappears along y. 

The global system includes the multidimensional compact relations centered at 
each node. The boundary conditions influence the block structure and determine the 
appearance of symmetry in these blocks. The numerical algorithm for solving the 
global system depends on this structure. 

If two Dirichlet boundary conditions appear in one direction, only relations of type 
(2) are used in that direction and the presence of symmetric tridiagonal blocks is 
observed in the global system matrix. Otherwise, relations of type (3) and (4) are 
used with Neumann boundary condition and an asymmetry results in the tridiagonal 
blocks. 

When Neumann boundary conditions occur in at most one direction, a direct 
method may be considered to solve the global system. This is based on the 
diagonalization of symmetric tridiagonal blocks for which the eigenvalues and eigen- 
vectors can be easily evaluated. The method is described for a two-dimensional 
problem by Shaanan and Ferziger [a]. If the index relative to the only direction 
where the Neumann boundary conditions occur, varies faster than the other two 
indices, the matrix of the system has a symmetric block tridiagonal structure 
exhibiting symmetric tridiagonal blocks of tridiagonal blocks. 

The diagonalization procedure works in two steps. In the first one, the global 
system of L x M x N equations is reduced to N symmetric block tridiagonal systems 
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M(P) = Pxx + PYY 

54 Cl c4 
46 * * 

Cl ca c5 
l + *  

cd c3 c6 
* + * 

, / 

P= 

5 

33 
l 

-3 

+ 

50 
+ 

330 
+ 

-30 
* 

\ 

: 

33 
It M(P) 

-2 
I) 

X-l/ha, , Y-l/h; 

cl = -120X + 480Y ~4 = 60X + 48Y 

c2 - -792x - 144OY c5 = 396X - 144Y 

c3 = 48X + 96OY c6=-24X . 96Y 

FIG. 3. Two-dimensional compact relation at a refinement node. 

of tridiagonal blocks of L x M equations. The second step reduces each of the N 
systems to M tridiagonal systems of L equations. These two successive 
diagonalizations apply the algorithm described in [6]. 

Here we consider the solution of Poisson’s equation with Neumann conditions 
imposed on five on the six faces of a parallelepiped. The previous direct method 
cannot be used so it was decided to resort to a successive overrelaxation method 
(SOR). As the structure of the system is tridiagonal, a single line SOR method 
improves the rate of convergence: when the relaxation factor is 1 (Gauss-Seidel), the 
convergence rate is twice that of the corresponding SOR method by points (Ames 
[7]). Let us note that an iterative method may prove competitive in practice with a 
direct method. It depends on the number of iterations needed to achieve the required 
accuracy. 

5. PRECISION AND TESTS 

A one-dimensional precision analysis of the discrete relationships was first worked 
out. Consider the one-dimensional problem corresponding to the Poisson’s equation: 
knowing the second derivative values p” at the nodes of a one-dimensional 
discretization net, we have to compute the function p at the same nodes. 

The basic relations (2)-(4) present a truncation error in terms of higher powers of 
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the spatial step and higher-order derivatives. The set of relations relative to each node 
may therefore be expressed by a numerical system of the form 

Ax=y+$, 

where 9 is the truncation error vector. Nevertheless, we solve in fact the system 

Ax’ = y. 

The solution of this last system is different from the exact solution x. Defining 

x’ = x + 2, 

the following error system is obtained: 

A% = -9. 

From the evaluation of the truncation errors i, it is possible to know the error 
distribution on the solution. The nature of boundary condition (Dirichlet or 
Neumann) and the presence or the absence of a mesh refinement near the boundary 
have an influence on both A and 9. On the other hand, the mesh size value does not 
appear in the coefficients of the A matrix, but affects only 9. 

With Dirichlet conditions on both boundaries, one uses a relation of type (2) at 
every node. The matrix A of the system can be inverted and the rth component of the 
error vector % takes the general form 

& = (-A - ‘f)r = 

where ~7~ is the ith component of 9 and n the order of the system. As the matrix -A is 
of monotone kind [8], one deduces that %t < f < %* if there exists f, and i2 with 
-Af, < 9 < -A%,. Therefore, if 9, is an upper bound of 9, then the solution %,, of the 
system -Ai = 9, is also an upper bound of the error ir, component by component. 
The truncation error in the tridiagonal relation (2) written at a node is proportional 
to the sixth power of the spatial step h and to the sixth derivativep’@ ofp evaluated 
at this point. One may consider a vector 9, with identica1 components, each of them 
equal to C = (h6/240) maxipi . (6’ The components of ir, are then 

(&Jr = $ r(n + 1 - r). 

The error distribution on the solution x of the basic system is therefore quadratic 
along the discretization net. The maximum error occurs at the center of the net and is 
proportional to the square of the number of steps and to the sixth power of h. It 
follows that by halving the spatial step h, the maximum error is divided by 16 and 
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the global precision is thus 8(h4). A local refinement of the mesh size near a 
boundary with Dirichlet condition has no favourable effect because the local error at 
the refinement node goes down from B(h6) to B(h5). 

The presence of a Neumann condition at one boundary reduces the global 
precision. A local error 8(h4) in the boundary node relation overcomes the errors 
8(P) at the other nodes. The general component of the error vector f is now 

r-1 

2,= c iy^,+&. 

i=l i=r 

The matrix --A is again of monotone kind and for an upper bound 9, whose 
components 3, are of the type 

ah6, i = l,..., n - 1, 

ch4, i= n, 

the components of SU become 

(n,), = ah6 [r(r - 1)/2 + r(n - r)] + ch4r. 

In practice, the second term exceeds the first one, and the distribution of the global 
error is essentially linear with a maximum value at the Neumann boundary. This 
value is proportional to the number of discretization nodes and to the fourth power of 
h. By halving the mesh size, the maximum error is divided by 8 and the global 
precision is f3(h3). 

Now, the treatment of a boundary with Neumann condition by a local refinement 
has a favorable effect. At the boundary node, the local error is evaluated with the step 
h/2 instead of h so it is smaller by a factor 16. The basic system generates an error 
vector f whose components are 

r-1 n-1 

l<r<n-1 

2, = 
l&y4+r c y ,̂+w,, 

i=r 
n-1 

c i*jq+(zn-1)9”, I = n. 
i=l 

The matrix -A is always of monotone kind and an upper bound 9, with components 
9, of the form 

ah6, i = l,..., n - 2, 

bh5, i=n- 1, 

c(W4, i = n, 
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TABLE I 

Two-Dimensional Tests 

Test function p: [0, I] x [O, I] + [O, 11: (x,y) -p = sin(n/2)xcos 2ny 

Mesh size Maximum error 

Second order 
Compact method 
Compact method 
Compact method 
Second order 

Compact method 

Compact method 

Compact method 

Shaanan and Ferziger 

Compact method 

Dirichlet on all boundaries 
Dirichlet on all boundaries 
Dirichlet on all boundaries 
Dirichlet on all boundaries 
Dirichlet along X 
Neumann along Y 
Dirichlet along X 
Neumann along I’ 
Dirichlet along X 
Neumann along Y 
Dirichlet along X 
Neumann along Y 
Dir.-Neum. along X 
Neum.-Neum. along I’ 
Dir.-Neum. along X 
Neum.-Neum. along Y 

l/32 
1132 
l/16 
V’ 
l/32 

l/32 

l/16 

W 

l/32 

2163, 1132 

-3.08 (-3) 
-5.91 (-6) 
-9.51 (-5) 
-1.55 (-3) 
-2.26 (-3) 

-6.58 (-5) 

-4.48 (-4) 

-2.02 (-3) 

6.03 (-1) 

-2.21 (-4) 

gives the following components for 1,: 

h4r +h2(2n-3-r)+bh+$ , 1 l(r<n-1 

h4 +h2(n-2)(n-l)tM(n-1)++(2n-1) , 1 I = n. 

The last term is again predominant. The global error varies linearly and its maximum 
appears at the Neumann boundary. However this maximum value is of the order of 
ch4n/8 in lieu of ch4n without refinement. The global effect of a local refinement 
(division by 2) of the spatial step near the Neumann boundary is therefore the 
reduction of the maximum error by a factor 8. This is an important increase of the 
precision at a low cost. 

The comparison of the solution of a two-dimensional Poisson’s equation by the 
present compact method and a classical second-order method shows the difference of 
precision (Table 1). In our test case, the compact method achieves the same level of 
precision as a second-order method, but with four times less points in each direction. 
The algorithm of Sweet [9] is used for the second-order method. 

Shaanan and Ferziger treats the 2-D test function of Table 1 with 
Dirichlet-Neumann conditions in the x-direction and Neumann-Neumann conditions 
in the y-direction. A first-order treatment of the Neumann conditions is proposed by 
using an artificial row of exterior points outside the integration domain. The result 



TA
BL

E 
2 

Th
re

e-
Di

m
en

sio
na

l 
Te

st
s 

0 

Te
st

 F
un

ct
io

n 
P:

[0
,1

]x
[0

,1
1x

[0
,1

1~
[0

,1
] 

(1
) 

64
x(

1 
-x

)y
(l 

-y
)z

(l 
-I)

 

(2
) 

64
x(

1 
-x

)y
(l 

-y
)z

3(
l 

-z
’) 

(3
) 

64
x3

(1
 -

x’
)y

(l 
-y

)z
(l-

z)
 

(4
) 

64
x3

(1
 -

x3
)$

(1
 

-y
’)z

’(l
 

-z
3)

 

(5
) 

64
x3

(1
 -

x3
)y

3(
1 

--y
3)

z3
(1

 
-z

3)
 

(6
) 

si
n(

lr/
2)

x 
si

n(
n/

2)
y 

(e
’ 

- 
l)/

(e
 

- 
I) 

Er
ro

rs
 

G
 

5 
k.

7 
h,

, 
h,

 
%

pt
im

um
 

E 
m

ax
. 

(C
 

I+
)” 

cc
 

E2
/4

 
X $ 

1 
I 

2 
TC

* 
ib' 

TF
 

1.
7 

-1
.7

4(
-1

4)
 

- 
B 

1 
1 

* 
10

) 
10

) 
I5

 
1.

7 
1.

12
(-3

) 
7.

46
(-4

) 
7.

95
(-4

) 
ti 

1 
IL

 
iti

’ 
10

’ 
I5

 
1.

7 
2.

15
(-3

) 
9.

85
(-4

) 
1.

07
(-3

) 
FJ

 

1 
I 

?.
 

rn
’ 

iii’
 

iT
 

1.
7 

1.
82

(-3
) 

8.
63

(-4
) 

9.
31

(-4
) 

x is
 

1 
I 

2 
20

’ 
3i

i’ 
3i

 
1.

55
 

2.
41

(-4
) 

8.
87

(-5
) 

9.
85

(-5
) 

E 
1 

I 
2 

IO
’ 

10
’ 

13
 

1.
7 

-1
.4

1(
-5

) 
7.

78
(-6

) 
8.

28
(-6

) 

’ 
n 

is
 th

e 
nu

m
be

r 
of

 c
al

cu
la

tio
n 

po
in

ts
. 



454 MERCIERANDDEVILLE 

obtained by this procedure is poor. The error value given in [ 61 corresponds to the 
imposition of Dirichlet conditions on all the boundaries. 

Different tests are then performed on the multidimensional compact method by 
solving a three-dimensional Poisson’s equation in a unit cube with Neumann 
conditions on five of the six faces and a Dirichlet condition on the sixth side (z = 1). 
This set of boundary conditions is particularly unfavourable and represents a severe 
test of precision. A reduction by two of the spatial step was set up near the Neumann 
boundaries. Table 2 shows the results. The first test with a product of polynomial 
functions in X, y, and z of order less than or equal to 3 yields the exact solution. The 
second test involves a higher-order polynomial in the z-direction, where a Neumann 
and a Dirichlet boundary conditions are applied, while in test 3, the higher-order 
polynomial is used in the x-direction with two Neumann conditions. A decrease of 
the accuracy is noted when there is one Neumann condition more, especially as 
h, = 2/15 is greater than h, = l/10 (comparison test 2-test 3). If the mesh size is 
divided by 2, the error is divided by 7.55, 9.73 or 9.45, according to the error 
definition (comparison test 4-test 5). Finally the use of higher-order polynomial 
functions constitutes a severe precision test because of the high values of the higher- 
order derivatives, which have a direct influence on the error, (comparison 
test 4-test 6). 

6. CONCLUSION 

Summarily, the previous tests show: 

(i) a global precision of order h’ with Neumann boundary conditions, the error 
being proportional to the number of nodes in the normal direction to the boundary 
and to the local error 8(h4); 

(ii) a global precision of order h* with Dirichlet boundary conditions, the error 
being proportional to the square of the number of nodes in a direction and to the 
local error B(h6). 
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